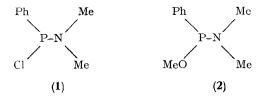
Angular Dependence of Two-bond Coupling Constant ${}^{2}J_{PNC}$ in the NN-Dimethylaminophosphines

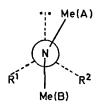
By MARIE-PAULE SIMONNIN and ROSE-MARIE LEQUAN

(Laboratoire de Spectrographie RMN de l'Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75-Paris, France)

and FELIX W. WEHRLI*


(VARIAN AG, Research Laboratory, Zug, Switzerland)

Summary Low-temperature carbon-13 n.m.r. spectra of NN-dimethylaminophosphines show the two-bond coupling constant ${}^{2}J$ PNC to be large and positive when the CN bond is *cis* with respect to the phosphorus lone pair, whilst it becomes small and negative in the *trans*-conformation.


PREVIOUS work on P-1³C scalar coupling in substituted ethylene phosphines suggested that these coupling constants might be dependent upon conformation,¹ and recently it has been shown that ${}^{2}J_{PCC}$ are indeed stereospecific in cyclic phosphines.² We report here experimental evidence for such an angular dependence of the two-bond coupling constant ${}^{2}J$ PNC in the aminophosphines.

Rotational barriers around the PN bond are high enough (7-10 kcal/mol) to allow observation of fixed conformations at low temperatures. ¹H N.m.r. spectra of various NN-dimethylaminophosphines indicate that, at low temperature, the two methyl protons become diastereotopic,^{3,4} implying a conformation as in (1), in agreement with an X-ray structure analysis of F₂P-NMe₂.⁵ The latter proved nitrogen to be trigonal, thus confirming the existence of a $p_{\pi}-d_{\pi}$ bond. It has moreover been shown⁴ that the methyl protons (A) *cis* to the phosphorus lone pair resonate at low-field and are more strongly coupled to phosphorus, so that ³JPNCH(A) > ³JPNCH(B), the two coupling constants being of the same sign, and probably positive.

 13 C Fourier transform proton noise-decoupled spectra of aminophosphines (1) and (2) have been recorded at 25.1 MHz on a Varian XL-100-15 n.m.r. spectrometer, above and below the coalescence temperature. Full experimental details will be published elsewhere.

At room temperature, the carbon atoms of the methyl groups are equivalent, and an average coupling constant ${}^{2}J_{PNC}$ is observed. The sign of ${}^{2}J_{PNC}$ in chloro-NN-dimethylaminophenylphosphine can be related to that of ${}^{3}J_{PNCH}$, which is known to be positive,^{6,7} by the offresonance technique,^{8,9} by irradiation 1.2 p.p.m. downfield resonances in chloro-NN-dimethylaminophenylphosphine. Selective irradiation of the high-field proton signal (H_B) left the high-field ¹³C doublet unchanged, whereas the low-field ¹³C doublet was not completely proton-decoupled. The same sequence holds therefore as in proton resonance, *i.e.* the ¹³C signal of CH₃(B), *trans* to the phosphorus lone pair is more highly shielded.

In both compounds, carbon atoms A and B are unequally coupled to phosphorus with $|^2JPNC(A)| >$ $|^2JPNC(B)|$. The average value of $\langle ^2JPNC \rangle$ at room temperature is equal to half the difference of the two absolute values observed at low temperature. This proves that $^2JPNC(A)$ and $^2JPNC(B)$ have opposite signs. Since $\langle ^2JPNC \rangle$ is positive and $^2JPNC(A)$ predominates, $^2JPNC(A)$ is positive like $^3JPNCH(A)$ and $^3JPNCH(B)$ whilst $^2JPNC(B)$ is negative.

TABLE.	² IPC and	¹³ C chemical	shifts in	dimethylamino	bhosbhi nes .

Compound	Temperatureª	⟨ δ(¹³ C) ⟩ ^b	$\langle {}^{2}J_{\rm PNC}\rangle$ /Hz	δ C(A) ^b	δ c(B) ^b	$^{2}J_{PNC(A)}$ /Hz	^{\$} fpnc(b) /Hz
(1)	$+30^{\circ c}$ - $60^{\circ c}$	39·2	+12.0	41.8	36.4	+33.9	-11.4
(2)	+30°c 100°d	38.6	+15.6	4 2·8	$35 \cdot 2$	+40	-7

^a Temperatures in °C are accurate to ± 5 °C. ^b Chemical shifts are given in p.p.m. downfield from Me₄Si. ^cC₆D₅·CD₃ solvent. ^d CFCl₃-(CD₃)₂CO solvent.

from Me₄Si, *i.e.* high-field relative to the proton signal, which resulted in two quartets the one at high-field showing a smaller residual splitting. This proves the phosphorus spin state is the same for the high-field components in the proton and ¹³C spectra. Therefore $\langle {}^{2}JPNC \rangle$ has the same sign as $\langle {}^{3}JPNCH \rangle$, *i.e.* positive, in agreement with the positive value found for ${}^{2}JPNC$ in trisdimethylaminophosphine.⁶

At low temperature, however, slow rotation around the P-N bond renders the two carbon atoms diastereotopic, giving rise to two doublets. Continuous-wave proton decoupling experiments allowed assignment of the carbon These results show the two-bond P-1³C coupling constants are related to the dihedral angle as previously observed^{2,7} for ²JPcc and ²JPcH. This conformational dependence of phosphorus coupling constants in trivalent organophosphorus compounds through two bonds appears to be a general trend and can be described in terms of the dihedral angle θ^7 between the phosphorus lone-pair orbital and the NC (or CC, CH) bond. In NN-dimethylaminophosphines, ²JPNC is large and positive when $\theta = 0^{\circ}$, while it becomes small and negative when $\theta = 180^{\circ}$.

(Received, 7th July 1972; Com. 1185.)

¹ M. P. Simonnin, R. M. Lequan, and F. W. Wehrli, Tetrahedron Letters, 1972, 1559.

² G. A. Gray and S. E. Cremer, Chem. Comm., 1972, 367.

³ M. P. Simonnin, J. J. Basselier, and C. Charrier, Bull. Soc. chim. France, 1967, 3544; D. Imbery and H. Friebolin, Z. Naturforsch., 1968, 236, 759; A. H. Cowley, M. J. S. Dewar, and W. R. Jackson, J. Amer. Chem. Soc., 1968, 90, 4185; J. Goldwhite and D. G. R. Rowsell, Chem. Comm., 1969, 713; A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, J. Amer. Chem. Soc., 1970, 92, 5206; M. P. Simonnin, C. Charrier, and R. Burgada, Org. Magnetic Resonance, 1972, 4, 113.

- 4 A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, J. Amer. Chem. Soc., 1970, 92, 1085.
- ⁵ E. D. Morris and C. E. Nordman, Inorg. Chem., 1969, 8, 1972.
- ⁶ R. D. Bertrand, F. Ogilvie, and J. G. Verkade, J. Amer. Chem. Soc., 1970, 92, 1908.
- ⁷ J. P. Albrand, A. Cogne, D. Gagnaire, J. Martin, J. B. Robert, and J. Verrier, Org. Magnetic Resonance, 1971, 3, 175.
- ⁸ F. J. Weigert and J. D. Roberts, J. Amer. Chem. Soc., 1971, 93, 2361.
- 9 H. J. Jakobsen, T. Bundgaard, and R. S. Hansen, Mol. Phy., 1972, 23, 197.
- ¹⁰ J. P. Albrand, D. Gagnaire, J. Martin, and J. B. Robert, Bull. Soc. chim. France, 1969, 40.